MODIS SCIENCE DATA SUPPORT TEAM PRESENTATION

August 23, 1991

AGENDA

- 1. Action Items
- 2. MODIS Airborne Simulator
- 3. MODIS Scheduler Discussion
- 4. HDF Status

ACTION ITEMS:

05/03/91 [Lloyd Carpenter and Tom Goff]: Prepare a Level-1 processing assumptions, questions and issues list, to be distributed to the Science Team Members and the MCST for comment. (The list, the executive summary, information on the EOS Platform Ancillary Data, and a cover letter were delivered for signature and distribution.) STATUS: Open. Due date 06/07/91.

06/07/91 [Liam Gumley]: Speak to Alan Strahler, when he returns, regarding his MAS requirements. (Strahler will be contacted when he becomes available.) STATUS: Open. Due date 07/05/91

05/31/91 [Al McKay and Phil Ardanuy]: Examine the effects of MODIS data product granule size on Level-1 processing, reprocessing, archival, distribution, etc. (Reports were provided on June 21 and 28, 1991.) STATUS: Open. Due Date 06/21/91

06/28/91 [Lloyd Carpenter and Tom Goff]: Prepare a detailed list of scheduler assumptions in relation to Level-1 MODIS processing scenarios. (Lists were provided on July 26 and August 16, 1991.) STATUS: Open. Due date 07/26/91.

Progress on MAS Level-1B processing system development

Progress up to 23 August 1991

Recent effort has been concentrated on the continued development of MAS thermal infrared band calibration software.

Since spectral response functions are not yet defined for the MAS IR bands, it has been necessary to develop calibration routines which will accept the spectral response functions when they become available. This software has been tested with the current MAMS spectral response functions.

Testing of the MAS Planck radiance computation software revealed differences from the values computed by the MAMS software (function PLANK). Chris Moeller at Wisconsin was contacted regarding this problem. He responded with updated spectral response files, central wavenumbers for the MAMS bands, and monochromaticity correction factors.

Testing of the MAS software with the new spectral responses against the MAMS software with the updated coefficients showed that the differences were now small. Chris Moeller was advised of the scale of the differences and he agreed that the numbers were now acceptable (see over).

The tools for the MAS calibration are now all in place, and the remaining task is to integrate them into one controlling program. This task is underway. Testing against real calibrated MAMS radiances is on hold until the rest of the MAMS test data set is delivered.

MAMS band 11 (11.2 micron) blackbody Planck radiances

```
В
                                С
     Α
                                             D
150.00000
                                            .00344
               1.74568
                             1.74224
155.00000
               2.28904
                             2.28535
                                            .00369
160.00000
               2.95158
                             2.94772
                                           .00386
165.00000
               3.74822
                             3.74429
                                            .00393
170.00000
               4.69403
                             4.69016
                                            .00388
175.00000
               5.80412
                             5.80042
                                           .00370
180.00000
               7.09339
                             7.08999
                                           .00340
185.00000
               8.57645
                                            .00294
                             8.57350
190.00000
              10.26757
                            10.26517
                                            .00240
195.00000
              12.18041
                            12.17866
                                            .00175
200.00000
              14.32806
                            14.32707
                                            .00099
205.00000
              16.72296
                            16.72276
                                            .00020
210.00000
              19.37675
                            19.37741
                                          -.00066
215.00000
              22.30047
                                          -.00143
                            22.30190
220.00000
              25.50406
                            25.50627
                                          -.00221
225.00000
              28.99692
                            28.99979
                                          -.00287
230.00000
              32.78744
                            32.79086
                                          -.00342
235.00000
              36.88340
                            36.88705
                                          -.00365
240.00000
              41.29152
                            41.29516
                                          -.00364
245.00000
              46.01778
                            46.02112
                                          -.00334
250.00000
              51.06746
                            51.07015
                                           -.00269
255.00000
              56.44509
                            56.44665
                                           -.00156
260.00000
              62.15444
                            62.15436
                                            .00008
265.00000
              68.19847
                            68.19626
                                            .00221
270.00000
              74.57994
                            74.57478
                                            .00516
275.00000
              81.30035
                            81.29164
                                            .00871
280.00000
              88.36099
                            88.34801
                                            .01299
285.00000
              95.76256
                            95.74445
                                            .01811
290.00000
             103.50520
                           103.48120
                                            .02408
295.00000
             111.58880
                           111.55770
                                            .03107
300.00000
             120.01220
                           119.97330
                                            .03889
305.00000
             128.77460
                           128.72680
                                            .04781
310.00000
             137.87430
                           137.81650
                                            .05779
315.00000
             147.30950
                           147.24060
                                            .06891
320.00000
             157.07770
                           156.99670
                                            .08092
325.00000
             167.17710
                           167.08250
                                            .09460
330.00000
             177.60440
                           177.49510
                                            .10931
335.00000
             188.35670
                           188.23140
                                            .12534
340.00000
             199.43080
                           199.28830
                                            .14255
345.00000
             210.82370
                           210.66240
                                            .16127
350.00000
              222.53150
                           222.35010
                                            .18132
A = Temperature (K)
B = Planck radiance from MAS code (mW/m^2/sr/cm^{-1})
C = Planck radiance from MAMS code (mW/m^2/sr/cm^{-1})
D - B - C
Approximate temperature difference at 350.0 K
= ( 0.18132 / ( 222.35010 - 210.66240 ) ) * 5.0 K = 0.07757 K
```



```
zspl3( n, t, y, h, b, u, v, z )
        subroutine
                        Compute the coefficients of a cubic spline
        Purpose
С
                        polynomial for a given set of 'knots'.
        Input
        int n
                        number of knots
C
        real t
                        x coordinates of knots (STRICTLY ascending order)
C
        real y
                        y coordinates of knots
C
        Output
С
        real h, b, u,
                        Coefficient storage arrays passed to spline
С
                        polynomial evaluation function SPL3.
С
        v, z
        Comment
                        Use function SPL3 to evaluate cubic spline
С
                        polynomial at a given x coordinate.
С
        Programmer
                        Liam E. Gumley, Curtin Univ.
С
                        From "Numerical Mathematics and Computing" by
        Algorithm
С
                        Ward Cheney and David Kincaid.
C
                        14-SEP-1990 12:05:10
        Last revised
С
        integer*4
        real*4
                        t(n), y(n), h(n), b(n), u(n), v(n), z(n)
        do 2 i = 1, n-1
                h(i) = t(i+1)-t(i)
                b(i) = (y(i+1)-y(i))/h(i)
2
        continue
        u(2) = 2.0 * (h(1)+h(2))
        v(2) = 6.0 * (b(2)-b(1))
        do 3 i = 3, n-1
                u(i) = 2.0 * (h(i)+h(i-1)) - h(i-1)**2/u(i-1)
                v(i) = 6.0 * (b(i)-b(i-1)) - h(i-1)*v(i-1)/u(i-1)
3
        continue
        z(n) = 0.0
        do 4 i = n-1, 2, -1
               z(i) = (v(i)-h(i)*z(i+1))/u(i)
4
        continue
        z(1) = 0.0
        return
        end
        real*4
                        function
                                        spl3( n, t, y, z, x )
                        Evaluate a cubic spline polynomial for a given
        Purpose
С
                        x coordinate.
С
        Input
С
С
        int n
                        number of knots
                        x coordinate of knots (STRICTLY ascending order)
С
        real t
                        y coordinate of knots
С
        real y
                        coefficient storage array calculated in
C
        real z
                        subroutine ZSPL3.
С
```

SPLINE.FOR 8-22-91 12:12p

```
x coordinate at which to find interpolated y
        real x
                        value
C
        0utput
С
                        interpolated y coordinate
        real spl3
C
                        Use subroutine ZSPL3 to compute the coefficients
        Comment
С
                        of the cubic spline polynomial.
                        Liam E. Gumley, Curtin Univ.
C
        Programmer
                        From "Numerical Mathematics and Computing" by
        Algorithm
                        Ward Cheney and David Kincaid.
                        14-SEP-1990 12:05:10
        last revised
С
        integer*4
        real*4
                        t(n), y(n), z(n)
        do 2 i = n-1, 2, -1
                diff = x-t(i)
                if(diff.ge.0.0) go to 3
2
        continue
        i = 1
        diff = x-t(1)
3
        h = t(i+1)-t(i)
        b = (y(i+1)-y(i))/h - h*(z(i+1) + 2.0*z(i))/6.0
        p = 0.5 * z(i) + diff*(z(i+1)-z(i))/(6.0*h)
        p = b + diff*p
        spl3 = y(i) + diff*p
        return
        end
```

≡ Planned Date: 08/22/91 MAS Level-1B Processing System ■ Actual MASO1 Each Symbol = 2 Days * Completed M Milestone MAS Level-1B Processing System Development at GSFC 1991 OCT JUN JLY AUG SEP Resource/Status Date 01....16....30....14....28....11....25....08....22....06....20....03.....17.....31 Task 06/01 ********* MAS data user requirements survey 06/01 ********** LG 06/01 Investigate hardware requirements ********* 06/01 Visit Wisconsin to obtain code/data 06/30 ** 07/09 LG Specify contents of Level-1B output 06/30 LG Obtain accounts on LTP VAX and IRIS 07/12 _____ ****** LG Transfer MAMS source code to VAX ***** LG Transfer MAMS/INS data to VAX ======= Decode INS data file _____ Get straight flight tracks from INS 07/12 ***** 1.6 Find regressions of heading vs time 07/12 ***** ***** LG _____ Investigate PCI software on IRIS ***** LG Write code to compute regressions ------***** I G Write code to unpack 8-bit imagery PHERETE LG *====== Write code to get straight imagery ****** Display 8 bit imagery on PC, IRIS ***** ERREFERE Examine MAMS calibration code ***** Develop calibration modules, driver 08/09 ******* LG Test calibration against MAMS data FEEFERE 08/09 LG Prepare subsampled data for IRIS 08/09 ***** 07/26 Examine MAMS geolocation code 08/23

Develop geolocation modules, driver 08/23

Test geolocation against MAMS data 09/06

Integrate calibration, geolocation 09/06

Date: 08/22/91 Each Symbol = 2 Days MAS Level-1B Processing System MASO1

■ Planned
■ Actual

* Completed
M Milestone

MAS Level-1B Processing System Development at GSFC

Task	Resource/Status	Date	1991 JUN 01	.16	30	JLY 14	28	AUG	25	SEP 08	22	0CT	20	NOV 03	.1731
Introduce users to	IRIS imagery LG	09/06													
Integrate Level-18		09/20										ES			
Process new MAMS d		09/20									ESSES	ES			
Fix any bugs found		09/20									EEEEE				
Incorporate any ch		09/20									##### #	==			
Integrate document		10/04											i i		
Create HDF output,		10/04										######################################	EE		
Test HDF read/writ	e routines (TEG) LG	10/04										ESSEE	EE		
Confirm MAS delive	ry with Ames LG	10/04													
First MAS flight f	or FIRE LG	11/18													М

Scheduler Corner Cases (How to use 'hot links')

- missing packets from CDOS
- · ancillary data incompleteness or missing
 - ephemeris
 - MCST
- · algorithm differences
 - land/ocean flag
 - data required for algorithms
 - parametric variances
- · A table of processing requirements for each input to this process
 - completeness quality
 - determined by percentage (actual granules incomplete are contained within the data product by a bit map)
 - completeness backwards pointer
 - Need a table of backwards pointers to the input data sets required to process this output data set. and whether the input sets have passed QC.

Applicability of HDF Capabilities to MODIS Data Storage Requirements

Thomas E. Goff

Background: The three MODIS instruments: Modis Aircraft Simulator (MAS) instrument, MODIS-N, and MODIS-T spacecraft instruments, are all imaging scanners with slightly different data from each other in the spatial and precision domains as tabulated below. All three have more than 8 bits of depth (resolution) for each pixel. The data products from these instruments will also include anchor points (ground control points) with latitude, longitude, solar and instrument zenith and azimuth angles, and similar data values.

The Hierarchical Data Format (HDF) format administered by the National Center for Supercomputing Applications (NCSA) is an attempt to produce an object oriented data interchange format between most existing computer systems. The format is designed to provide all the necessary information about the data, from within the data set contents. This allows a higher level computer program to access the data sets within a file without any apriori knowledge of the format or contents of that file. The two groups of HDF data types are the Raster Image Group (RIG) and Scientific Data Group (SDG). Both of these groups support a two dimensional array data set. A further technique called (Vset) allows hierarchical and multi-variate data sets to be considered as combined objects.

Limitations: The HDF format supports 8 bit (and 3x8=24 bit) RIG and floating point two dimensional matrices. The MODIS instruments require 8-10 bits for MAS, 12 bit for MODIS-N and 13 bits for MODIS-T. As computers like to have their internal data byte aligned, a 16 bit RIG data type would be sufficient to cover these MODIS instruments. NCSA has no current plans to implement a 16 bit RIG format but acknowledges that it would be desirable.

Representing the pixel data in the SDG data type format will expand the data set by a factor of two. Integer data in the user higher level program is passed to the HDF routines which produces an IEEE floating point format in the data file. This is the only data representation that is written to the storage media (other than ASCII). In the MAS case, most of the usable data is only accurate to 8 bits (10 bits for thermal channels) which can be accurately represented in a 16 bit word after calibration is applied. This is expected to be implemented to keep data sizes as small as possible. MODIS-N and T can also be accommodated with 16 bit calibrated data.

If the anchor point data were attached to every pixel in the image, a SDG data type could be used. However, the anchor points are to be attached only to selected pixels in the scan. This would require the creation of a new data type that can map the

anchor points to their corresponding scan locations. The NSCA people have an avenue to allow users to create both public and private (registered with NCSA) date types. The public types are needed to support more than one instrument or computer systems.

The Vset technique can be used as it is currently implemented to associate one anchor point data type to multiple band images. This assumes that a new RIG format would have been already implemented and added as a sub type in the HDF hierarchy.

Comments: Efforts by NSSDC for the transmission of AVHRR 10 bit data have the same problems as the MODIS data sets in respect to pixel depth.

Summary: A RIG data type needs added to HDF to handle 16 bit raster images, and an anchor point data type added for ground point association. These would most likely require programming efforts by personnel other than the NSCA people.